Showing posts with label metal. Show all posts
Showing posts with label metal. Show all posts

Friday, 8 November 2013

Extrusion

Extrusion is the process by which long straight metal parts can be produced. The cross-sections that can be produced vary from solid round, rectangular, to L shapes, T shapes. Tubes and many other different types. Extrusion is done by squeezing metal in a closed cavity through a tool, known as a die using either a mechanical or hydraulic press.
Extrusion produces compressive and shear forces in the stock. No tensile is produced, which makes high deformation possible without tearing the metal. The cavity in which the raw material is contained is lined with a wear resistant material. This can withstand the high radial loads that are created when the material is pushed the die.
Extrusions, often minimize the need for secondary machining, but are not of the same dimensional accuracy or surface finish as machined parts. Surface finish for steel is 3 µm; (125 µ in), and Aluminum and Magnesium is 0.8 µm (30 µ in). However, this process can produce a wide variety of cross-sections that are hard to produce cost-effectively using other methods. Minimum thickness of steel is about 3 mm (0.120 in), whereas Aluminum and Magnesium is about 1mm (0.040 in). Minimum cross sections are 250 mm2 (0.4 in2) for steel and less than that for Aluminum and Magnesium. Minimum corner and fillet radii are 0.4 mm (0.015 in) for Aluminum and Magnesium, and for steel, the minimum corner radius is 0.8mm(0.030 in) and 4 mm (0.120 in) fillet radius.



enginegearclutch.blogspot.in






Other Topics

Saturday, 26 October 2013

Flask Technology



This casting technology was originally developed for the jewellery and dental industries, for the production of comparatively small parts. As the production time is relatively short compared to conventional shell building, it is also being applied more and more for Rapid Prototyping.  In the embedding machine a chalky powder is mixed with water under vacuum and poured over the wax part, housed in a small metal container, the so-called flask.


This casting technology was originally developed for the jewellery and dental industries, for the production of comparatively small parts. As the production time is relatively short compared to conventional shell building, it is also being applied more and more for Rapid Prototyping.  In the embedding machine a chalky powder is mixed with water under vacuum and poured over the wax part, housed in a small metal container, the so-called flask.This casting technology was originally developed for the jewellery and dental industries, for the production of comparatively small parts. As the production time is relatively short compared to conventional shell building, it is also being applied more and more for Rapid Prototyping.  In the embedding machine a chalky powder is mixed with water under vacuum and poured over the wax part, housed in a small metal container, the so-called flask.

After solidification of the plaster, the flask is heated to a casting temperature of 300 – 500 °C, step by step. It is then cooled down depending on the material.

After the cast the part is de-bedded by means of a high-pressure water-jet to release the part from the plaster. The part is then sent for finishing.
Advantages:
Very good surface quality
Material is only mixed if required
No cores are necessary
Easy de-bedding by water
Disadvantages:
Only small and medium-sized parts are possible
Only low melting alloys e.g. aluminium can be cast, no steel
High material usage and lot of waste
No perfect casting quality because of the long solidification process, depending on the size of the flask
Burning takes up to several days, depending on flask size
Oven is blocked for many hours / days with (one) flask, as soon as the tempering process has been started

After solidification of the plaster, the flask is heated to a casting temperature of 300 – 500 °C, step by step. It is then cooled down depending on the material.

After the cast the part is de-bedded by means of a high-pressure water-jet to release the part from the plaster. The part is then sent for finishing.
Advantages:
Very good surface quality
Material is only mixed if required
No cores are necessary
Easy de-bedding by water
Disadvantages:
Only small and medium-sized parts are possible
Only low melting alloys e.g. aluminium can be cast, no steel
High material usage and lot of waste
No perfect casting quality because of the long solidification process, depending on the size of the flask
Burning takes up to several days, depending on flask size
Oven is blocked for many hours / days with (one) flask, as soon as the tempering process has been started

After solidification of the plaster, the flask is heated to a casting temperature of 300 – 500 °C, step by step. It is then cooled down depending on the material.

After the cast the part is de-bedded by means of a high-pressure water-jet to release the part from the plaster. The part is then sent for finishing.



Advantages:
Very good surface quality
Material is only mixed if required
No cores are necessary
Easy de-bedding by water


Disadvantages:
Only small and medium-sized parts are possible
Only low melting alloys e.g. aluminium can be cast, no steel
High material usage and lot of waste
No perfect casting quality because of the long solidification process, depending on the size of the flask
Burning takes up to several days, depending on flask size
Oven is blocked for many hours / days with (one) flask, as soon as the tempering process has been started


This casting technology was originally developed for the jewellery and dental industries, for the production of comparatively small parts. As the production time is relatively short compared to conventional shell building, it is also being applied more and more for Rapid Prototyping.  In the embedding machine a chalky powder is mixed with water under vacuum and poured over the wax part, housed in a small metal container, the so-called flask.

After solidification of the plaster, the flask is heated to a casting temperature of 300 – 500 °C, step by step. It is then cooled down depending on the material.

After the cast the part is de-bedded by means of a high-pressure water-jet to release the part from the plaster. The part is then sent for finishing.
Advantages:
Very good surface quality
Material is only mixed if required
No cores are necessary
Easy de-bedding by water
Disadvantages:
Only small and medium-sized parts are possible
Only low melting alloys e.g. aluminium can be cast, no steel
High material usage and lot of waste
No perfect casting quality because of the long solidification process, depending on the size of the flask
Burning takes up to several days, depending on flask size
Oven is blocked for many hours / days with (one) flask, as soon as the tempering process has been started


Other Topics



Physics basic inventions and inventors

1.Which instrument is used to measure altitudes in aircraft's ? Audiometer Ammeter Altimeter Anemometer Explanation : ...