Showing posts with label open die forging. Show all posts
Showing posts with label open die forging. Show all posts

Thursday, 7 November 2013

Flashless (Enclosed Impression Die) Forging

Flashless Forging

Impression die forging is sometimes performed in totally enclosed impressions. The process is used to produce a near-net or net shape forging. The dies make no provision for flash because the process does not depend on the formation of flash to achieve complete filling. Actually, a thin fin or ring of flash may form in the clearance between the upper punch and die, but it is easily removed by blasting or tumbling operations, and does not require a trim die. The process is therefore called "flashless forging", and is sometimes called "enclosed die forging".

Enclosed dies are illustrated in Figure 5-14. In some cases the lower die may be split, allowing as-forged undercuts. Split die arrangements are illustrated in Figure 5-15.

The absence of flash is an obvious advantage for flashless forging over the conventional impression die process, but the process imposes additional requirements. For example, flashless forging is usually accomplished in one operation, and does not allow for progressive development of difficult-to-forge features through several stages of metal flow. In addition, the volume of metal in the workpiece must be controlled within very narrow limits to achieve complete filling of the cavity without developing extreme pressures. It takes some very well controlled preforming steps to accomplish this precise weight control in the final die.

http://enginegearclutch.blogspot.com/2013/11/flashless-enclosed-impression-die.html.

Other Topics



Precision Forging

Precision Forging

Modern technological advances in the metal forging process and in the design of die, have allowed for the development of precision forging. Precision forging may produce some or no flash and the forged metal part will be at or near its final dimensions, requiring little or no finishing. The number of manufacturing operations is reduced as well as the material wasted. In addition, precision forging can manufacture more complex parts with thinner sections, reduced draft angles, and closer tolerances. The disadvantages of these advanced forging methods are that special machinery and die are needed, also more careful control of the manufacturing process is required. In precision forging, the amount of material in the work, as well as the flow of that material through the mold must be accurately determined. Other factors in the process such as the positioning of the work piece in the cavity must also be performed precisely.




Other Topics

Impression Die Forging

Compression of workpart by dies with inverse of desired part shape
Flash is formed by metal that flows beyond die cavity into small gap between die plates
Flash must be later trimmed, but it serves an important function during compression:

As flash forms, friction resists continued metal flow into gap,constraining metal to fill die cavity



Impression‑Die Forging Practice

•Several forming steps are often required
-With separate die cavities for each step
•Beginning steps redistribute metal for more uniform deformation and desired metallurgical structure in subsequent steps
•Final steps bring the part to final geometry

Wednesday, 6 November 2013

Cogging

Successively reducing the thickness of a bar with open die forging
•Also called drawing out
•Reducing the thickness of a long section of a bar without
excessive forces or machining

a cogging operation on a rectangular bar. Blacksmiths use this process to reduce the thickness of bars by hammering the part on an anvil. Note the barreling of the workpiece.




Other Topics

Open Die Forging


Open die forging involves the shaping of heated metal parts between a top die attached to a ram and a bottom die attached to a hammer anvil or press bed. Metal parts are worked above their recrystallization temperatures-ranging from 1900°F to 2400°F for steel-and gradually shaped into the desired configuration through the skillful hammering or pressing of the work piece.

While impression or closed die forging confines the metal in dies, open die forging is distinguished by the fact that the metal is never completely confined or restrained in the dies. Most open die forgings are produced on flat dies. However, round swaging dies, V-dies, mandrels, pins and loose tools are also used depending on the desired part configuration and its size.

Although the open die forging process is often associated with larger, simpler-shaped parts such as bars, blanks, rings, hollows or spindles, in fact it can be considered the ultimate option in "custom-designed" metal components. High-strength, long-life parts optimized in terms of both mechanical properties and structural integrity are today produced in sizes that range from a few pounds to hundreds of tons in weight. In addition, advanced forge shops now offer shapes that were never before thought capable of being produced by the open die forging process.













Other Topics















Physics basic inventions and inventors

1.Which instrument is used to measure altitudes in aircraft's ? Audiometer Ammeter Altimeter Anemometer Explanation : ...