Showing posts with label tunnel. Show all posts
Showing posts with label tunnel. Show all posts

Wednesday 27 November 2013

Types of hydro-power plant

Types of Hydropower Plants

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.
Many dams were built for other purposes and hydropower was added later. In the United States, there are about 80,000 dams of which only 2,400 produce power. The other dams are for recreation, stock/farm ponds, flood control, water supply, and irrigation.
Hydropower plants range in size from small systems for a home or village to large projects producing electricity for utilities. The sizes of hydropower plants are described below.

Impoundment

The most common type of hydroelectric power plant is an impoundment facility. An impoundment facility, typically a large hydropower system, uses a dam to store river water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. The water may be released either to meet changing electricity needs or to maintain a constant reservoir level.
Drawing showing a cross section of an impoundment dam and hydropower plant. Transmission lines conduct electricity to homes and businesses. Dam stores water. Penstock carries water to the turbines. Generators are rotated by the turbines to generate electricity. Turbines are turned by the force of the water on their blades.
An impoundment hydropower plant dams water in a reservoir.

Diversion

A diversion, sometimes called run-of-river, facility channels a portion of a river through a canal or penstock. It may not require the use of a dam.
Photo of an aerial view of a river with a waterfall and no dam. The hydropower intake and outlet are labeled. The intake is above the waterfall; the outlet is below it.
The Tazimina project in Alaska is an example of a diversion hydropower plant. No dam was required.

Pumped Storage

When the demand for electricity is low, a pumped storage facility stores energy by pumping water from a lower reservoir to an upper reservoir. During periods of high electrical demand, the water is released back to the lower reservoir to generate electricity.

Sizes of Hydroelectric Power Plants

Facilities range in size from large power plants that supply many consumers with electricity to small and micro plants that individuals operate for their own energy needs or to sell power to utilities.

Large Hydropower

Although definitions vary, DOE defines large hydropower as facilities that have a capacity of more than 30 megawatts.

Small Hydropower

Although definitions vary, DOE defines small hydropower as facilities that have a capacity of 100 kilowatts to 30 megawatts.

Micro Hydropower

A micro hydropower plant has a capacity of up to 100 kilowatts. A small or micro-hydroelectric power system can produce enough electricity for a home, farm, ranch, or village.











Drawing shows a micro hydropower plant. Intake gates allow water to flow through the Penstock Powerhouse to the turbine..




Other Topics

Hydroelectric Power Plants

Hydroelectric Power Plants
 


Animation of a hydroelectric power plant in a dam

Hydroelectric power plants convert the hydraulic potential energy from water into electrical energy. Such  plants are suitable were water with suitable head are available. The layout covered in this article is just a simple one and only cover the important parts of  hydroelectric plant.The different parts of  a hydroelectric power plant are

(1) Dam
Dams are structures built over rivers to stop the water flow and form a reservoir.The reservoir stores the water flowing down the river. This water is diverted to turbines in power stations. The dams collect water during the rainy season and stores it, thus allowing for a steady flow through the turbines throughout the year. Dams are also used for controlling floods and irrigation. The dams should be water-tight and should be able to withstand the pressure exerted by the water on it. There are different types of dams such as arch dams, gravity dams and buttress dams. The height of water in the dam is called head race.

(2) Spillway
A spillway as the name suggests could be called as a way for spilling of water from dams. It is  used to provide for the release of flood water from a dam. It is used to prevent over toping of the dams which could result in damage or failure of  dams. Spillways could be controlled type or uncontrolled type. The uncontrolled types start releasing water upon water rising above a particular level. But in case of the controlled type, regulation of flow is possible.Cross section of a
          power house




















(3) Penstock and Tunnel
Penstocks are pipes which carry water from the reservoir to the turbines inside power station. They are usually made of  steel and are equipped with gate systems.Water under high pressure flows through the penstock. A tunnel serves the same purpose as a penstock. It is used when an obstruction is present between the dam and power station such as a mountain.

(4) Surge Tank
Surge tanks are tanks connected to the water conductor system. It serves the purpose of reducing water hammering in pipes which can cause damage to pipes. The sudden surges of water in penstock is taken by the surge tank, and when the water requirements increase, it supplies the collected water thereby regulating water flow and pressure inside the penstock.

(5) Power Station
Power station contains a turbine coupled to a generator (see the cross section of a power house on the left). The water brought to the power station rotates the vanes of the turbine producing  torque and rotation of turbine shaft. This rotational torque is transferred to the generator and is converted into electricity. The used water is released through the tail race. The difference between head race and tail race is called gross head and by subtracting the frictional losses we get the net head available to the turbine for generation of electricity.



Other Topics

Physics basic inventions and inventors

1.Which instrument is used to measure altitudes in aircraft's ? Audiometer Ammeter Altimeter Anemometer Explanation : ...