Wednesday, 30 October 2013

Casting Process Quiz






Other Topics
IC engine, Air Standard Cycles, Method of Ignition, Gear Types, mechanical Engineering, Gears, spur gears,Worm gears,English books,Photoshop tutorials,Physics files,Thamizh,Manufacturing,Gears pdf,Computer science,Harry potter,Best 100 english books,Face Gears,IC engine,Metal Casting,Sand casting,SAND Casting Quiz,Casting patterns quiz,Sand Casting Process,Patterns,Mechnical Previous Years Gate Question Papers ,Mechanical-old-question-paper,Core and Core Box,Shell Moulding,Permanent mold casting,Investment Casting,Die Casting,Centrifugal Casting,Workshop Technology Quiz,Milling Quiz,Metal Quiz,Mechanical Process Quiz,Chemically Bonded Molding Systems,Unbonded Sand Processes,Green Sand Molding,Gases Iin Metal Casting,Plaster Mold Casting,Ceramic Mold Casting,Vacuum Casting,Hot Chamber Die Casting,Continuous Casting,Casting Process Quiz

Continuous casting

Continuous casting, also referred to as strand casting, is a process used in manufacturing industry to cast a continuous length of metal. Molten metal is cast through a mold, the casting takes the two dimensional profile of the mold but its length is indeterminate. The casting will keep traveling downward, its length increasing with time. New molten metal is constantly supplied to the mold, at exactly the correct rate, to keep up with the solidifying casting. Industrial manufacture of continuous castings is a very precisely calculated operation. Continuous casting can produce long strands from aluminum and copper, also the process has been developed for the production of steel.




The Process

Molten metal, from some nearby source, is poured into a tundish. A tundish is a container that is located above the mold, it holds the liquid metal for the casting. This particular casting operation uses the force of gravity to fill the mold and to help move along the continuous metal casting. The tundish is where the operation begins and is thus located high above ground level, as much as eighty or ninety feet. As can be seen, the continuous casting operation may require a lot of space.
It is the job of the tundish to keep the mold filled to the right level throughout the manufacturing operation. Since the metal casting is constantly moving through the mold, the tundish must always be supplying the mold with more molten metal to compensate.
The supplying of metal to the mold is not only going on throughout the entire manufacturing operation, it must be carried out with accuracy. A control system is employed to assist with this task. Basically the system can sense what the level of molten metal is, knows what the level should be, and can control the pouring of the metal from the tundish to ensure the smooth flow of the casting process. Although the tundish can typically hold several thousand pounds of metal, it too must be constantly supplied from the source of molten material.
The tundish also serves as the place where slag and impurities are removed from the melt. The high melting point and reactive nature, at high temperatures, has always made steel a difficult material to cast. When a manufacturing operation is continuously casting steel, the reactivity of the molten steel to the environment needs to be controlled. For this purpose, the mold entrance may be filled with an inert gas such as argon. The inert gas will push away any other gases, such as oxygen, that may react with the metal. There is no need to worry about the inert gas reacting with a molten metal melt, since inert gases do not react with anything at all.
The metal casting moves quickly through the mold, in the continuous manufacture of the metal part. The casting does not have time to solidify completely in the mold. As can be remembered from our discussion on solidification, a metal casting will first solidify from the mold wall, or outside of the casting, then solidification will progress inward. The mold in the continuous casting process is water cooled, this helps speed up the solidification of the metal casting. As stated earlier, the continuous casting does not completely harden in the mold. It does, however, spend enough time in the water cooled mold to develop a protective solidified skin of an adequate thickness on the outside.
The long metal strand is moved along at a constant rate, by way of rollers. The rollers help guide the strand and assist in the smooth flow of the metal casting out of the mold and along its given path. A group of special rollers may be used to bend the strand to a 90 degree angle. Then another set will be used to straighten it, once it is at that angle. Commonly used in manufacturing industry, this process will change the direction of flow of the metal strand from vertical to horizontal.





Vertical 
To Horizontal Direction Change For A Continuous Casting Operation



The continuous casting can now travel horizontally as far as necessary. The cutting device, in manufacturing industry, is typically a torch or a saw. Since the metal casting does not stop moving, the cutting device must move with the metal casting, at the same speed, as it does its cutting. There is another commonly used setup for cutting lengths of metal casting strand from a continuous casting operation. This particular manufacturing setup eliminates the need for bending and straightening rollers. It does, however, limit the length of metal casting strand that may be produced, based in a large part on the height of the casting floor where the mold is located.






Alternate 
Method Of Cutting Slabs For Continuous Casting Manufacture



There needs to be an initial setup for a continuous casting operation, since you can not just pour molten metal through an empty system to start off the process. To begin continuous casting manufacture, a starter bar is placed at the bottom of the mold. Molten material for the metal casting is poured into the mold and solidifies to the bar. The bar gives the rollers something to grab onto initially. The rollers pull the bar, which pulls along the continuous casting.





Starting A 
Continuous Casting Manufacturing Process



In the manufacture of a product, often two or more different kinds of operations may need to be performed. Such as a metal casting operation followed by a metal forming operation. In modern commercial industry, the continuous casting process can be integrated with metal rolling. Do not confuse the rolling operation with the rolls used to guide the casting. The rolling operation is a forming process and it will change the metal it processes. Rolling of the metal strand, is the second manufacturing process and it must be performed after the casting operation. Continuous casting is very convenient in that the rolling mill can be fed directly from the continuously cast metal casting strand. The metal strand can be rolled directly into a given cross sectional shape such as an I beam. The rate of the rolling operation is synchronized with the speed that the continuous metal casting is produced and thus the two operations are combined as one.





Continuous 
Casting Combined With A Rolling Operation



Properties And Considerations Of Manufacturing By Continuous Casting

  • Continuous casting manufacture is different from other metal casting processes, particularly in the timing of the process. In other casting operations, the different steps to the process such as the ladling of metal, pouring, solidification, and casting removal all take place one at a time in a sequential order. In continuous casting manufacture, these steps are all occurring constantly and at the same time.

  • This process is used in commercial manufacture as a replacement to the traditional process of casting ingots.

  • Piping, a common problem in ingot manufacture, is eliminated with the continuous casting process.

  • Structural and chemical variations in the metal of the casting, often present in ingots, have been eliminated. When manufacturing with the continuous metal casting process, the casting's material will possess uniform properties.

  • When employing continuous metal casting manufacture, the castings will solidify at 10 times the rate that a casting solidifies during ingot production.

  • With less loss of material, cost reduction, higher productivity rate, and superior quality of castings, continuous casting manufacture is often the choice over ingot production.

  • A continuous casting manufacturing process will take considerable resources and planning to initiate, it will be employed in only very serious industrial operations.



Other Topics
IC engine, Air Standard Cycles, Method of Ignition, Gear Types, mechanical Engineering, Gears, spur gears,Worm gears,English books,Photoshop tutorials,Physics files,Thamizh,Manufacturing,Gears pdf,Computer science,Harry potter,Best 100 english books,Face Gears,IC engine,Metal Casting,Sand casting,SAND Casting Quiz,Casting patterns quiz,Sand Casting Process,Patterns,Mechnical Previous Years Gate Question Papers ,Mechanical-old-question-paper,Core and Core Box,Shell Moulding,Permanent mold casting,Investment Casting,Die Casting,Centrifugal Casting,Workshop Technology Quiz,Milling Quiz,Metal Quiz,Mechanical Process Quiz,Chemically Bonded Molding Systems,Unbonded Sand Processes,Green Sand Molding,Gases Iin Metal Casting,Plaster Mold Casting,Ceramic Mold Casting,Vacuum Casting,Hot Chamber Die Casting,

Hot Die Casting

Hot chamber die casting is one of the two main techniques in the manufacturing process of die casting. This section will primarily discuss the specific details of the hot chamber process and contrast the differences between hot chamber die casting and cold chamber die casting, which is the other branch of die casting manufacture.

Hot Chamber Process

A similar characteristic of either die casting process is the use of high pressure to force molten metal through a mold called a die. Many of the superior qualities of castings manufactured by die casting, (such as great surface detail), can be attributed to the use of pressure to ensure the flow of metal through the die. In hot chamber die casting manufacture, the supply of molten metal is attached to the die casting machine and is an integral part of the casting apparatus for this manufacturing operation.




Hot Die Casting 
Operation Is Ready



The shot cylinder provides the power for the injection stroke. It is located above the supply of molten metal. The plunger rod goes from the shot cylinder down to the plunger, which is in contact with the molten material. At the start of a casting cycle, the plunger is at the top of a chamber (the hot-chamber). Intake ports allow this chamber to fill with liquid metal.
As the cycle begins, the power cylinder forces the plunger downward. The plunger travels past the ports, cutting off the flow of liquid metal to the hot chamber. Now there should be the correct amount of molten material in the chamber for the "shot" that will be used to fill the mold and produce the casting.

At this point the plunger travels further downward, forcing the molten metal into the die. The pressure exerted on the liquid metal to fill the die in hot chamber die casting manufacture usually varies from about 700psi to 5000psi (5MPa to 35 MPa). The pressure is held long enough for the casting to solidify.

In preparation for the next cycle of casting manufacture, the plunger travels back upward in the hot chamber exposing the intake ports again and allowing the chamber to refill with molten material.

For more extensive details on the setup of the mold, the die casting process, or the properties and considerations of manufacturing by die casting see die casting for the basics of the process.
Hot chamber die casting has the advantage of a very high rate of productivity. During industrial manufacture by this process one of the disadvantages is that the setup requires that critical parts of the mechanical apparatus, (such as the plunger), must be continuously submersed in molten material. Continuous submersion in a high enough temperature material will cause thermal related damage to these components rendering them inoperative. For this reason, usually only lower melting point alloys of lead, tin, and zinc are used to manufacture metal castings with the hot chamber die casting process

SLUSH MOLDING PROCESS

Slush molding is an excellent method of producing open, hollow objects,including rain boots, shoes, toys, dolls and automotive products, such as protective skin coatings on arm rests, head rests and crash pads. The basic process of slush molding involves exposing a hollow mold to heat, filling a hollow mold with vinyl plastisol or vinyl powder compound, gelling an innerlayer or wall of plastisol or partially fused powder  compound in the mold, inverting the mold to pour out the excess liquid plastisol or unfused powder
compound and then heating the mold again to fuse the vinyl compound which remains in the mold. The mold is then cooled and the finished part is removed.

Slush molding can be a simple hand operation for limited production, or an elaborate conveyorized system for long runs. This process can be a one pour method, where finished or semi-finished products can be made by one slushing step, or a multiple-pour method where two or more slushing steps are used.

The wall thickness of the slush molded part, made from powder compound at a given oven temperature, is determined by several factors: the thickness of the metal wall of the mold, the length of time the mold is preheated, and the amount and type of plasticizer in the compound.

Molds used in slush molding are produced from spun, machined or electroformed aluminum. Vinyl
powder compound will reproduce the surface finish of the mold, whether matte or glossy. Mold porosity, depending upon severity, may cause such detrimental effects as surface gloss reduction, pinholing, and voids in the molded part.





Other Topics

Vacuum Casting

Vacuum mold casting, also known in manufacturing industry as the V process, employs a sand mold that contains no moisture or binders. The internal cavity of the mold holds the shape of the casting due to forces exerted by the pressure of a vacuum. Vacuum molding is a casting process that was developed in Japan around 1970.

The Process

A special pattern is used for the vacuum mold casting process. It is either a match-plate or a cope and drag pattern with tiny holes to enable a vacuum suction. A thin plastic sheet is placed over the casting pattern and the vacuum pressure is turned on, causing the sheet to adhere to the surface of the pattern.






A special flask is used for this manufacturing process. The flask has holes to utilize vacuum pressure. This flask is placed over the casting pattern and filled with sand.







A pouring cup and sprue are cut into the mold for the pouring of the metal casting.







Next, another thin plastic sheet is placed over the top of the mold. The vacuum pressure acting through the flask is turned on, and the plastic film adheres to the top of the mold.







In the next stage of vacuum mold casting manufacture, the vacuum on the special casting pattern is turned off and the pattern is removed. The vacuum pressure from the flask is still on. This causes the plastic film on the top to adhere to the top and the plastic film formerly on the pattern to adhere to the bottom. The film on the bottom is now holding the impression of the casting in the sand with the force of the vacuum suction.







The drag portion of the mold is manufactured in the same fashion. The two halves are then assembled for the pouring of the casting. Note that there are now 4 plastic films in use. One on each half of the internal casting cavity and one on each of the outer surfaces of the cope and drag.







During the pouring of the casting, the molten metal easily burns away the plastic.








Properties And Considerations Of Manufacturing By Vacuum Mold Casting

  • In vacuum mold casting manufacture there is no need for special molding sands or binders.

  • Sand recovery and reconditioning, a common problem in metal casting industry, is very easy due to the lack of binders and other agents in the sand.

  • When manufacturing parts by vacuum mold casting the sand mold contains no water, so moisture related metal casting defects are eliminated.

  • The size of risers can be significantly reduced for this metal casting process, making it more efficient in the use of material.

  • Casting manufacture by vacuum molding is a relatively slow process.

  • Vacuum mold casting is not well suited to automation.


Other Topics

Ceramic Mold Casting

The manufacturing process of ceramic mold casting is like the process of plaster mold casting but can cast materials at much higher temperatures. Instead of using plaster to create the mold for the metal casting, ceramic casting uses refractory ceramics for a mold material. In industry, parts such as machining cutters, dies for metalworking, metal molds, and impellers may be manufactured by this process.

Process

The first step in manufacture by ceramic mold casting is to combine the material for the mold. A mixture of fine grain zircon (ZrSiO4), aluminum oxide, fused silica, bonding agents, and water, creates a ceramic slurry . This slurry is poured over the casting pattern and let set. The pattern is then removed and the mold is left to dry. The mold is then fired. The firing will burn off any unwanted material and make the mold hardened and rigid. The mold may also need to be baked in a furnace as well. The firing of the mold produces a network of microscopic cracks in the mold material. These cracks give the ceramic mold both good permeability and collapsibility for the metal casting process.


Ceramic Mold Casting


Once prepared, the two halves of the mold are assembled for the pouring of the metal casting. The two halves,(cope and drag section), may be backed up with fireclay material for additional mold strength. Often in manufacturing industry, the ceramic mold will be preheated prior to pouring the molten metal. The metal casting is poured, and let solidify. In ceramic mold casting, like in other expendable mold processes, the ceramic mold is destroyed in the removal of the metal casting.






Properties And Considerations Of Manufacturing By Ceramic Mold Casting

  • Manufacturing by ceramic mold casting is similar to plaster mold casting in that it can produce parts with thin sections, excellent surface finish, and high dimensional accuracy. Manufacturing tolerances between .002 and .010 inches are possible with this process.

  • To be able to cast parts with high dimensional accuracy eliminates the need for machining, and the scrap that would be produced by machining. Therefore precision metal casting processes like this are efficient to cast precious metals, or materials that would be difficult to machine.

  • Unlike the mold material in the plaster metal casting process, the refractory mold material in ceramic casting can withstand extremely elevated temperatures. Due to this heat tolerance, the ceramic casting process can be used to manufacture ferrous and other high melting point metal casting materials. Stainless steels and tool steels can be cast with this process.

  • Ceramic mold casting is relatively expensive.

  • The long preparation time of the mold makes manufacturing production rates for this process slow.

  • Unlike in plaster mold casting, the ceramic mold has excellent permeability due to the microcrazing, (production of microscopic cracks), that occurs in the firing of the ceramic mold.



Other Topics

Tuesday, 29 October 2013

Plaster Mold Casting

Plaster mold casting is a manufacturing process having a similar technique to sand casting. Plaster of Paris is used to form the mold for the casting, instead of sand. In industry parts such as valves, tooling, gears, and lock components may be manufactured by plaster mold casting.


The Process

Initially plaster of Paris is mixed with water just like in the first step of the formation of any plaster part. In the next step of the manufacture of a plaster casting mold, the plaster of Paris and water are then mixed with various additives such as talc and silica flour. The additives serve to control the setting time of the plaster and improve its strength. The plaster of Paris mixture is then poured over the casting pattern. The slurry must sit for about 20 minutes before it sets enough to remove the pattern. The pattern used for this type of metal casting manufacture should be made from plastic or metal. Since it will experience prolonged exposure to water from the plaster mix, wood casting patterns have a tendency to warp. After striping the pattern, the mold must be baked for several hours, to remove the moisture and become hard enough to pour the metal casting. The two halves of the mold are then assembled for the casting process.



Properties and Considerations of Manufacturing by Plaster Mold Casting

  • When baking the casting mold just the right amount of water should be left in the mold material. Too much moisture in the mold can cause metal casting defects, but if the mold is too dehydrated, it will lack adequate strength.

  • The fluid plaster slurry flows readily over the pattern, making an impression of great detail and surface finish. Also due to the low thermal conductivity of the mold material the casting will solidify slowly creating more uniform grain structure and mitigating casting warping. The qualities of the plaster mold enable the process to manufacture parts with excellent surface finish, thin sections, and produces high geometric accuracy.

Plaster Mold Casting
Castings of high detail and section thickness as low as .04 - .1 inch,
(2.5 - 1 mm), are possible when manufacturing by plaster mold casting




  • There is a limit to the casting materials that may be used for this type of manufacturing process, due to the fact that a plaster mold will not withstand temperature above 2200F (1200C). Higher melting point metals can not be cast in plaster. This process is typically used in industry to manufacture castings made from aluminum, magnesium, zinc, and copper based alloys.

  • Manufacturing production rates for this type of metal casting process are relatively slow, due to the long preparation time of the mold.

  • The plaster mold is not permeable, which severely limits the escape of gases from the casting. 


Other Topics

Gases In Metal Casting

Gases During The Manufacture Of A Casting

The molten metal used during the casting process may trap and contain gases. There are various reasons that gases are absorbed into the metal melt during manufacture. Turbulent flow of the casting material through the system may cause it to trap gas from the air. Gases may be trapped from material or the atmosphere in the crucible when the melt is being prepared. Gases may be trapped from reactions between the molten metal and the mold material.
Since liquid metal has a much higher solubility than solid metal, as the casting solidifies these gases are expelled. If they can not escape they may form vacancies in the material, causing porosity in the metal casting.
Whether a vacancy in a cast material is a result of gases or shrinkage is sometimes hard to tell. If the vacancies are spherical and smooth they are most likely a result of gases. Angular and rough vacancies are most likely a result of shrinkage. Gross absences of material within the metal casting are a result of shrinkage.


Prevention Of Gas Defects When Manufacturing A Part By Casting

  • Gases being expelled by the material during solidification can be eliminated by a proper venting system in the mold. This can be planned out during the manufacturing design phase of the metal casting process.
  • Mitigating the amount of turbulence in the fluid flow will reduce gas absorption into the metal.
  • Removal of slag will help eliminate gases and other impurities in the casting.
  • Gases may be removed by flushing a metal melt with inert gas.
  • Elimination of gases may also be accomplished by pouring the metal casting in a vacuum.


Material Selection

The selection of proper materials is important in the design of a metal casting process. Here are a few things to remember when selecting manufacturing materials.

  • Metals, when in a molten state, may react a certain way with other materials they encounter during the casting process. This should always be a consideration. For example, liquid aluminum will react readily with iron. Iron ladles and surfaces contacting the molten aluminum can be covered with a spray on ceramic coating to prevent this.
  • When selecting a type of manufacturing process, remember that some materials may be more applicable to different metal casting techniques than others.
  • Knowing the specific heat of the mold and that of the metal used for the casting will be influential in controlling the thermal gradients in the system.
  • Section of casting metal will factor heavily on the melt's fluidity.
  • A material with a high heat of fusion will take longer to solidify and may improve flow characteristics within the casting.
  • When manufacturing a casting with a metal alloy that freezes over a temperature range, problems may occur due to the solid phase interfering with the liquid phase, both of which will be present within the temperature range. To help reduce this problem, a metal alloy with a shorter solidification temperature range may be selected to manufacture the casting. Or select a mold material with a high thermal conductivity, which could reduce the time spent in the solidification range by increasing the cooling rate. 

  • Other Topics



    Green Sand Molding

    The most common method used to make metal castings is green sand molding. In this process, granular refractory sand is coated with a mixture of bentonite clay, water and, in some cases, other additives. The additives help to harden and hold the mold shape to withstand the pressures of the molten metal.
    The green sand mixture is compacted through mechanical force or by hand around a pattern to create a mold. The mechanical force can be induced by slinging, jolting, squeezing or by impact/impulse.
    The following points should be taken into account when considering the green sand molding process:
    • for many metal applications, green sand processes are the most cost-effective of all metal forming operations;
    • these processes readily lend themselves to automated systems for high-volume work as well as short runs and prototype work;
    • in the case of slinging, manual jolt or squeeze molding to form the mold, wood or plastic pattern materials can be used. High-pressure, high-density molding methods almost always require metal pattern equipment;
    • high-pressure, high-density molding normally produces a well-compacted mold, which yields better surface finishes, casting dimensions and tolerances;
    • the properties of green sand are adjustable within a wide range, making it possible to use this process with all types of green sand molding equipment and for a majority of alloys poured.



    Other Topics

    Unbonded Sand Processes

    Unlike the sand casting processes that use various binders to hold the sand grains together, two unique processes use unbonded sand as the molding media. These include the lost foam process and the less common V-process.
    Lost Foam Casting—In this process, the pattern is made of expendable polystyrene (EPS) beads. For high-production runs, the patterns can be made by injecting EPS beads into a die and bonding them together using a heat source—usually steam. For shorter runs, pattern shapes are cut from sheets of EPS using conventional woodworking equipment and then assembled with glue. In either case, internal passageways in the casting, if needed, are not formed by conventional sand cores but are part of the mold itself.
    The polystyrene pattern is coated with a refractory coating, which covers both the external and internal surfaces. With the gating and risering system attached to the pattern, the assembly is suspended in a one-piece flask, which then is placed onto a compaction or vibrating table. As the dry, unbonded sand is poured into the flask and pattern, the compaction and vibratory forces cause the sand to flow and densify. The sand flows around the pattern and into the internal passageways of the pattern.
    As the molten metal is poured into the mold, it replaces the EPS pattern, which vaporizes. After the casting solidifies, the unbonded sand is dumped out of the flask, leaving the casting with an attached gating system.
    With larger castings, the coated pattern is covered with a facing of chemically bonded sand. The facing sand is then backed up with more chemically bonded sand.
    The lost foam process offers the following advantages:
    • no size limitations for castings;
    • improved surface finish of castings due to the pattern’s refractory coating;
    • no fins around coreprints or parting lines;
    • in most cases, separate cores are not needed;
    • excellent dimensional tolerances.
    V-process—In the V-process, the cope and drag halves of the mold are formed separately by heating a thin plastic film to its deformation point. It then is vacuum-formed over a pattern on a hollow carrier plate.
    The process uses dry, free-flowing, unbonded sand to fill the special flask set over the film-coated pattern. Slight vibration compacts the fine grain sand to its maximum bulk density. The flask is then covered with a second sheet of plastic film. The vacuum is drawn on the flask, and the sand between the two plastic sheets becomes rigid.
    The cope and drag then are assembled to form a plastic-lined mold cavity. Sand hardness is maintained by holding the vacuum within the mold halves at 300-600 mm/Hg. As molten metal is poured into the mold, the plastic film melts and is replaced immediately by the metal. After the metal solidifies and cools, the vacuum is released and the sand falls away.

     


    Other Topics

    Chemically Bonded Molding Systems

    This category of sand casting process is used widely throughout the metalcasting industry because of the economics and improved productivity each offers. Each process uses a unique chemical binder and catalyst to cure and harden the mold and/or core. Some processes require heat to facilitate the curing mechanism, though others do not.
    Gas Catalyzed or Coldbox Systems—Coldbox systems utilize a family of binders where the catalyst is not added to the sand mixture. Catalysts in the form of a gas or vapor are added to the sand and resin component so the mixture will not cure until it is brought into contact with a catalyst agent. The sand-resin mixture is blown into a corebox to compact the sand, and a catalytic gas or vapor is permeated through the sand mixture, where the catalyst reacts with the resin component to harden the sand mixture almost instantly. Any sand mixture that has not come into contact with the catalyst is still capable of being cured, so many small cores can be produced from a large batch of mixed sand.
    Several coldbox processes exist, including phenolic urethane/amine vapor, furan/SO2, acrylic/SO2 and sodium silicate/CO2. In general, coldbox processes offer:
    • good dimensional accuracy of the cores because they are cured without the use of heat;
    • excellent surface finish of the casting;
    • short production cycles that are optimal for high production runs;
    • excellent shelf life of the cores and molds.
    Shell Process—In this process, sand is pre-coated with a phenolic novalac resin containing a hexamethylenetetramine catalyst. The resin-coated sand is dumped, blown or shot into a metal corebox or over a metal pattern that has been heated to 450-650F (232-343C). Shell molds are made in halves that are glued or clamped together before pouring. Cores, on the other hand, can be made whole, or, in the case of complicated applications, can be made of multiple pieces glued together.

    Benefits of the shell process include:
    • an excellent core or mold surface resulting in good casting finish;
    • good dimensional accuracy in the casting because of mold rigidity;
    • storage for indefinite periods of time, which improves just-in-time delivery;
    • high-volume production;
    • selection of refractory material other than silica for specialty applications;
    • a savings in materials usage through the use of hollow cores and thin shell molds.
    Nobake or Airset Systems—In order to improve productivity and eliminate the need for heat or gassing to cure mold and core binders, a series of resin systems referred to as nobake or airset binders was developed.
    In these systems, sand is mixed with one or two liquid resin components and a liquid catalyst component. As soon as the resin(s) and catalyst combine, a chemical reaction begins to take place that hardens (cures) the binder. The curing time can be lengthened or shortened based on the amount of catalyst used and the temperature of the refractory sand.

    The mixed sand is placed against the pattern or into the corebox. Although the sand mixtures have good flowability, some form of compaction (usually vibration) is used to provide densification of the sand in the mold/core. After a period of time, the core/mold has cured sufficiently to allow stripping from the corebox or pattern without distortion. The cores/molds are then allowed to sit and thoroughly cure. After curing, they can accept a refractory wash or coating that provides a better surface finish on the casting and protects the sand in the mold from the heat and erosive action of the molten metal as it enters the mold cavity.
    The nobake process provides the following advantages:
    • wood, and in some cases, plastic patterns and coreboxes can be used;
    • due to the rigidity of the mold, good casting dimensional tolerances are readily achievable;
    • casting finishes are very good;
    • most of the systems allow easy shakeout (the separation of the casting from the mold after solidification is complete);
    • cores and molds can be stored indefinitely.



    Other Topics

    Monday, 28 October 2013

    Mechanical process Quiz

    Metal Quiz

    Milling QUIZ

    Workshop Technology

    Physics basic inventions and inventors

    1.Which instrument is used to measure altitudes in aircraft's ? Audiometer Ammeter Altimeter Anemometer Explanation : ...