Friday, 8 November 2013

Forging defects

Forging defects:
Though forging process give generally prior quality product compared other manufacturing processes. There are some defects that are lightly to come a proper care is not taken in forging process design.
A brief description of such defects and their remedial method is given below.
 Unfilled Section:
In this some section of the die cavity are not completely filled by the flowing metal. The causes of this defects are improper design of the forging die or using forging techniques.
Cold Shut:
This appears as a small cracks at the corners of the forging. This is caused manely by the improper design of die. Where in the corner and the fillet radie are small as a result of which metal does not flow properly into the corner and the ends up as a cold shut.
Scale Pits:
This is seen as irregular depurations on the surface of the forging. This is primarily caused because of improper cleaning of the stock used for forging. The oxide and scale gets embedded into the finish forging surface. When the forging is cleaned by pickling, these are seen as depurations on the forging surface.
Die Shift:
This is caused by the miss alignment of the die halve, making the two halve of the forging to be improper shape. 
 Flakes:
These are basically internal ruptures caused by the improper cooling of the large forging. Rapid cooling causes the exterior to cool quickly causing internal fractures. This can be remedied by following proper cooling practices.
Improper Grain Flow:
This is caused by the improper design of the die, which makes the flow of the metal not flowing the final interred direction.

enginegearclutch.blogspot.in



Other Topics

Thursday, 7 November 2013

Flashless (Enclosed Impression Die) Forging

Flashless Forging

Impression die forging is sometimes performed in totally enclosed impressions. The process is used to produce a near-net or net shape forging. The dies make no provision for flash because the process does not depend on the formation of flash to achieve complete filling. Actually, a thin fin or ring of flash may form in the clearance between the upper punch and die, but it is easily removed by blasting or tumbling operations, and does not require a trim die. The process is therefore called "flashless forging", and is sometimes called "enclosed die forging".

Enclosed dies are illustrated in Figure 5-14. In some cases the lower die may be split, allowing as-forged undercuts. Split die arrangements are illustrated in Figure 5-15.

The absence of flash is an obvious advantage for flashless forging over the conventional impression die process, but the process imposes additional requirements. For example, flashless forging is usually accomplished in one operation, and does not allow for progressive development of difficult-to-forge features through several stages of metal flow. In addition, the volume of metal in the workpiece must be controlled within very narrow limits to achieve complete filling of the cavity without developing extreme pressures. It takes some very well controlled preforming steps to accomplish this precise weight control in the final die.

http://enginegearclutch.blogspot.com/2013/11/flashless-enclosed-impression-die.html.

Other Topics



Precision Forgings vs. Conventional Forgings?

Precision Forgings differ from Conventional Forgings in many ways.  While Conventional forgings are typically machined on all surfaces, a Precision Forging is often characterized by very slight draft angles (0 to 1 degree), thin cross-sections, close tolerances, small radii, and excellent surface finishes.
While the tooling for a precision forging is typically more costly to produce and maintain, the advantages of precision forgings over conventional forgings pay multiple dividends.  The net or near-net shape of the precision forging can greatly reduce machining times and produce a part that is nearly ready to put right into service.  Additionally, the optimal grain structure of a precision forging increases fatigue life, and produces superior stress and inter-granular corrosion resistance.

Precision Forging

Precision Forging

Modern technological advances in the metal forging process and in the design of die, have allowed for the development of precision forging. Precision forging may produce some or no flash and the forged metal part will be at or near its final dimensions, requiring little or no finishing. The number of manufacturing operations is reduced as well as the material wasted. In addition, precision forging can manufacture more complex parts with thinner sections, reduced draft angles, and closer tolerances. The disadvantages of these advanced forging methods are that special machinery and die are needed, also more careful control of the manufacturing process is required. In precision forging, the amount of material in the work, as well as the flow of that material through the mold must be accurately determined. Other factors in the process such as the positioning of the work piece in the cavity must also be performed precisely.




Other Topics

Impression Die Forging

Compression of workpart by dies with inverse of desired part shape
Flash is formed by metal that flows beyond die cavity into small gap between die plates
Flash must be later trimmed, but it serves an important function during compression:

As flash forms, friction resists continued metal flow into gap,constraining metal to fill die cavity



Impression‑Die Forging Practice

•Several forming steps are often required
-With separate die cavities for each step
•Beginning steps redistribute metal for more uniform deformation and desired metallurgical structure in subsequent steps
•Final steps bring the part to final geometry

edging

Edging is also an open die forging process often used in manufacturing practice, to prepare a work for sequential metal forging processes. In edging, open die with concave surfaces plastically deform the work material. Edging acts to cause metal to flow into an area from both sides. Edging and fullering both are used to redistribute bulk quantities of the metal forging's material.









Edging Of A Metal Forging.


 
Other Topics

Wednesday, 6 November 2013

Cogging

Successively reducing the thickness of a bar with open die forging
•Also called drawing out
•Reducing the thickness of a long section of a bar without
excessive forces or machining

a cogging operation on a rectangular bar. Blacksmiths use this process to reduce the thickness of bars by hammering the part on an anvil. Note the barreling of the workpiece.




Other Topics

Forging

Forging is the process by which metal is heated and is shaped by plastic deformation by suitably applying compressive force. Usually the compressive force is in the form of hammer blows using a power hammer or a press.
Forging refines the grain structure and improves physical properties of the metal. With proper design, the grain flow can be oriented in the direction of principal stresses encountered in actual use. Grain flow is the direction of the pattern that the crystals take during plastic deformation. Physical properties (such as strength, ductility and toughness) are much better in a forging than in the base metal, which has, crystals randomly oriented.
Forgings are consistent from piece to piece, without any of the porosity, voids, inclusions and other defects. Thus, finishing operations such as machining do not expose voids, because there aren't any. Also coating operations such as plating or painting are straightforward due to a good surface, which needs very little preparation.
Forgings yield parts that have high strength to weight ratio-thus are often used in the design of aircraft frame members.
A Forged metal can result in the following
  • Increase length, decrease cross-section, called drawing out the metal.
Decrease length, increase cross-section, called upsetting the metal.
Change length, change cross-section, by squeezing in closed impression dies. This results in favorable grain flow for strong parts
 
 

Open Die Forging


Open die forging involves the shaping of heated metal parts between a top die attached to a ram and a bottom die attached to a hammer anvil or press bed. Metal parts are worked above their recrystallization temperatures-ranging from 1900°F to 2400°F for steel-and gradually shaped into the desired configuration through the skillful hammering or pressing of the work piece.

While impression or closed die forging confines the metal in dies, open die forging is distinguished by the fact that the metal is never completely confined or restrained in the dies. Most open die forgings are produced on flat dies. However, round swaging dies, V-dies, mandrels, pins and loose tools are also used depending on the desired part configuration and its size.

Although the open die forging process is often associated with larger, simpler-shaped parts such as bars, blanks, rings, hollows or spindles, in fact it can be considered the ultimate option in "custom-designed" metal components. High-strength, long-life parts optimized in terms of both mechanical properties and structural integrity are today produced in sizes that range from a few pounds to hundreds of tons in weight. In addition, advanced forge shops now offer shapes that were never before thought capable of being produced by the open die forging process.













Other Topics















Friday, 1 November 2013

Squeeze Casting

The process is suitable for components with relatively thick wall sections with high mechanical properties, as for example required of safety components in automotive engineering. The cast components can be welded and heattreated, and they can be produced with near net shape. Aluminum alloys can be used which are difficult or impossible to produce by standard die casting.

Buhler selectively utilizes the advantages of the horizontal shot sleeve system.
Advantages using Buhler machines

• The velocity and pressure intensification profile matched to the component geometry can be programmed in very many discrete steps. Real time control maintains these parameters constant.
• Depending on the type of shot unit selected, it is possible to generate high pressure intensification values during the solidification phase.

Your benefits
• Low capital investment, as no special-purpose machines are required.
• Entering of future-oriented market segments using existing SC machines.
• Low maintenance and training requirements thanks to unified machine and die ranges.

Cold Chamber Process


The essential feature of this process is the independent holding and injection units. In the cold chamber process metal is transferred by ladle, manually or automatically, to the shot sleeve. Actuation of the injection piston forces the metal into the die. This is a single-shot operation. This procedure minimizes the contact time between the hot metal and the injector components, thus extending their operating life. However, the turbulence associated with high-speed injection is likely to entrain air in the metal, which can cause gas porosity in the castings. The cold chamber process is used for the production of aluminum and copper base alloys and has been extended to the production of steel castings. Next to zinc aluminum is the most widely used die-casting alloy. The primary advantage is it light weight and its high resistance to corrosion. Magnesium alloy die-castings are also produced and are used where a high strength–to–weight ratio is desirable.
The mold has sections, which include the “cover” or hot side and the “movable” or ejector side. The die may also have additional moveable segments called slides or pulls, which are used to create features such as undercuts or holes which are parallel to the parting line. The machines run at required temperatures and pressures to produce a quality part to near net-shape.







 

Some application for Aluminum Die Castings:
o Automotive industry
o Home Appliances
o Communication Equipment
o Sports & Leisure







Other Topics

Sandy loam soils

Sandy loam soils are dominated by sand particles, but contain enough clay and sediment to provide some structure and fertility. There are four different types of sandy loam soil that are classified based on the size of the sand particles in the soil. You can determine whether your yard has this kind of soil using a simple test.

Classification

Sandy loam soils are broken down into four categories, including coarse sandy loam, fine sandy loam, sandy loam and very fine sandy loam. The size of the sand particles is measured in millimeters and their concentration in the soil is used to determine which category a soil falls under. Sandy loam soils are made of approximately 60 percent sand, 10 percent clay and 30 percent silt particles.

Characteristics

Sandy loam soils have visible particles of sand mixed into the soil. When sandy loams soils are compressed, they hold their shape but break apart easily. Sandy loam soils have a high concentration of sand that gives them a gritty feel. In gardens and lawns, sandy loam soils are capable of quickly draining excess water but can not hold significant amounts of water or nutrients for your plants. Plants grown in this type of soil will require more frequent irrigation and fertilization than soils with a higher concentration of clay and sediment. Sandy loam soils are often deficient in specific micronutrients and may require additional fertilization to support healthy plant growth.

Identification

You can quickly identify sandy loam soil based on its physical characteristics. Pick up a handful of dry soil and slowly dribble water onto it. Work the water into the soil with your hand until it has a smooth consistency similar to putty. Hold the soil in your hand as though you are holding a pipe straight up and down and squeeze it. Sandy loam soils have a very gritty texture. If your soil is a sandy loam, it will form a cohesive ribbon of soil as it squeezes out between your thumb and finger that will fall apart before it reaches one inch in length.

Considerations

Plants that are grown in a sandy loam soil need frequent irrigation and fertilization to maintain healthy growth. The best way to improve a sandy loam soil for gardening is to mix organic matter into the soil. Incorporating a 2- to 4-inch layer of compost or peat moss over the area can significantly improve the ability of your sandy loam soil to hold nutrients and water.

Facing Sand

A sand casting facing composition comprises a dry mixture of about 77% fine sand, 5% binder, 6% green system sand and 12% burned system sand. The fine sand is mulled with 5.8% wt/wt oil per total dry mixture and catalyst at about 0.5% wt/wt. Preferably, fine sand and binder are mulled with oil, catalyst, green system sand and screened burned system. The mulled mixture is rested, mulled again and rested again before use as facing sand for achieving accurate reproduction of the pattern's fine detail. A method of preparing the mold and preserving fine detail comprises riddling the pattern with a thin layer of the facing sand composition, compacting, riddling with dry system sand and riddling with system sand before compacting about the periphery of the pattern. Final layers of system sand are applied and compacted over the entire pattern.

Green Sand

Greensand is a naturally occurring mineral mined from ocean deposits from a sedimentary rock known as "Glauconite". It is often an olive-green colored sandstone rock found in layers in many sedimentary rock formations.

Origin of Greensand
Greensand forms in anoxic (without oxygen) marine environments that are rich in organic detritus and low in sedimentary inputs. Some greensands contain marine fossils (i.e. New Jersey Greensand). Greensand has been found in deposits all over the world.
The greenish color comes from the mineral glauconite and iron potassium silicate that weathers and breaks down releasing the stored minerals. The color may range from a dark greenish gray, green-black to blue-green depending on the minerals and water content. It often weathers easily and forms nodules that have been oxidized with iron bearing minerals that has a reddish brown or rust color.
The major chemical description is ((K,Na)(Fe+3, Al, Mg)2(Si,Al)4O10(OH)2)
General chemical information:
Iron (Fe) 12-19%
Potassium (K) 5-7%
Silicon (Si) 25.0%
Oxygen (O) 45%
Magnesium (Mg) 2-3 %
Aluminum (Al) 1.9 %
Sodium (Na) 0.27%
Hydrogen (H) 0.47%
Over 30 other trace minerals and many micronutrients.

Types of Greensand
Glauconite is the name given to a group of naturally occurring iron rich silica minerals that may be composed of pellets or grains.
When glauconite is mined the upper layers that have weathered and become oxidized and minerals are released. These sometimes form pyrite a iron sulfide (FeS2) when oxygen is absent. In the deeper layers or reduced zone pyrite crystals often form. Other minerals found by magnetic separation are Zn, Ni, Cu, and many trace minerals and micronutrients.
The potassium (K) is often found in potassium saturated layers of mica, vermiculite and montmorillonite. Greensand is often considered a clay mineral due to the presence of chlorite, kaolinite, vermiculite, and other clay minerals that may be present.
Greensand is a very heavy mineral with a density of approximately 90 pounds per cubic foot (over 1 ton per cubic yard). The minerals are normally released slowly over time but occur much faster in organic rich soils full of beneficial microbes (microbes produce organic acids as they break down organic matter which facilitates the release of the minerals for plant absorption).
The pH of greensand varies from slightly acidic to slightly alkaline depending on the source and has little effect on soils.

Sources of Greensand
Greensand deposits are found all over the world with the largest and most numerous deposits in the United States and in Great Britain. The original deposits used in Horticulture were from the New Jersey area. In recent years several deposits have been found scattered from East Texas near Lufkin to West of San Antonio and in Arkansas.

Uses of Greensand
Greensand has been used for over 100 years as a natural source of slow release fertilizer and soil conditioner. The slow release of potash and phosphate does not burn plants and the minerals improve the moisture holding properties of soil. The best deposits of greensand contain at least 90% of the mineral glauconite and less than 2-3% clay minerals.
The cation exchange capacities (CEC) of soils were found to increase as the weathering of the greensand increased. The mineral glauconite is used as a water softener and it very beneficial to fight chlorosis in iron deficient soils.
Greensand often has the consistency of sand but is able to absorb 10 times more moisture which makes it a good amendment for use in agriculture and horticulture for many soils types. Greensand does not burn plants and helps for beneficial microbes to grow in the soil. It also has been found to be a good conditioner to help loosen heavy and tight soils and help bind loose soils.
Greensand is often used in compost piles to increase the nutrient content and diversity of beneficial microbes.
Recommended application is 2-4 pounds of greensand per 100 square feet or 1 ton per acre. For potting soils 5-20 pounds per cubic yard can be beneficial.
A field test by Rutgers University in a sandy loam soil with greensand applied in the row at the time of planting, found that the application of greensand increased the yield of potatoes by 16%.
The benefits of greensand, largely unexplained by scientific research are far more than a laboratory analysis would indicate. However numerous greenhouse and field studies have shown significant improvement in the growth of plants. Other studies have shown that the use of greensand improves the taste, color, nutritional value, the health of plants and the health of soils.



Other Topics
IC engine, Air Standard Cycles, Method of Ignition, Gear Types, mechanical Engineering, Gears, spur gears,Worm gears,English books,Photoshop tutorials,Physics files,Thamizh,Manufacturing,Gears pdf,Computer science,Harry potter,Best 100 english books,Face Gears,IC engine,Metal Casting,Sand casting,SAND Casting Quiz,Casting patterns quiz,Sand Casting Process,Patterns,Mechnical Previous Years Gate Question Papers ,Mechanical-old-question-paper,Core and Core Box,Shell Moulding,Permanent mold casting,Investment Casting,Die Casting,Centrifugal Casting,Workshop Technology Quiz,Milling Quiz,Metal Quiz,Mechanical Process Quiz,Chemically Bonded Molding Systems,Unbonded Sand Processes,Green Sand Molding,Gases Iin Metal Casting,Plaster Mold Casting,Ceramic Mold Casting,Vacuum Casting,Hot Chamber Die Casting,Continuous Casting,Casting Process Quiz,Types Of Molding Sand In Casting-process,Green Sand

Types of Molding sand in Casting Process

Types of molding sand:

 
types of molding sand in casting process

  Green sand:

                                 Natural sand with moisture

 Dry sand:

                                Not suitable for large castings

Facing sand:

This sand is used directly next to the surface of the pattern and comes into contact with the molten metal when the mould is poured.
As a result, it is subjected to the severest conditions and must possess, therefore, high strength and refractoriness. This sand also provides a smoother casting surface and should be of fine texture. It is made of silica sand and clay, and some additives without the addition of used sand.
Facing sand is always used to make dry sand moulds while system sand is frequently used for green sand molding.

Parting sand:

This sand is used to prevent adhering of two halves of mould surfaces in each molding box when they are separated. Thus, to ensure good parting, the mould surface (at contact of cope and Drag) should be treated with parting sand or some other parting material.
It is also sprinkled or applied on the pattern surface (before the molding sand is put over it) to avoid its sticking and permit its easy withdrawal from the mould. The parting sand is fine dry sand.

Backing or floor or black sand:

This is the sand which is used to back up the facing sand and to fill the whole volume of the flask. Old, repeatedly used molding sand is mainly employed for this purpose.             

  Core sand:

                                The core sand mainly consists of silica sand and an organic binder, with very little, if any, clay content. The presence of clay in core sand reduces its permeability and collapsibility. The core sand may contain small percentages of other constituents also, to enhance its properties.            

 Loam sand:

                                50 % of clay and dried hard and using for large castings
 
 
 

Physics basic inventions and inventors

1.Which instrument is used to measure altitudes in aircraft's ? Audiometer Ammeter Altimeter Anemometer Explanation : ...